Coordinated transport of phosphorylated amyloid-β precursor protein and c-Jun NH2-terminal kinase–interacting protein-1
نویسندگان
چکیده
The transmembrane protein amyloid-beta precursor protein (APP) and the vesicle-associated protein c-Jun NH(2)-terminal kinase-interacting protein-1 (JIP-1) are transported into axons by kinesin-1. Both proteins may bind to kinesin-1 directly and can be transported separately. Because JIP-1 and APP can interact, kinesin-1 may recruit them as a complex, enabling their cotransport. In this study, we tested whether APP and JIP-1 are transported together or separately on different vesicles. We found that, within the cellular context, JIP-1 preferentially interacts with Thr(668)-phosphorylated APP (pAPP), compared with nonphosphorylated APP. In neurons, JIP-1 colocalizes with vesicles containing pAPP and is excluded from those containing nonphosphorylated APP. The accumulation of JIP-1 and pAPP in neurites requires kinesin-1, and the expression of a phosphomimetic APP mutant increases JIP-1 transport. Down-regulation of JIP-1 by small interfering RNA specifically impairs transport of pAPP, with no effect on the trafficking of nonphosphorylated APP. These results indicate that the phosphorylation of APP regulates the formation of a pAPP-JIP-1 complex that accumulates in neurites independent of nonphosphorylated APP.
منابع مشابه
Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation
Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...
متن کاملMinocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation
Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...
متن کاملLoss of c-Jun N-terminal kinase-interacting protein-1 does not affect axonal transport of the amyloid precursor protein or Aβ production
Disruption to axonal transport is an early pathological feature in Alzheimer's disease. The amyloid precursor protein (APP) is a key axonal transport cargo in Alzheimer's disease since perturbation of its transport increases APP processing and production of amyloid-β peptide (Aβ) that is deposited in the brains of Alzheimer's disease patients. APP is transported anterogradely through axons on k...
متن کاملDishevelled regulates the metabolism of amyloid precursor protein via protein kinase C/mitogen-activated protein kinase and c-Jun terminal kinase.
Alzheimer's disease (AD) is a disorder of two pathologies: amyloid plaques, the core of which is a peptide derived from the amyloid precursor protein (APP), and neurofibrillary tangles composed of highly phosphorylated tau. Protein kinase C (PKC) is known to increase non-amyloidogenic alpha-secretase cleavage of APP, producing secreted APP (sAPPalpha), and glycogen synthase kinase (GSK)-3beta i...
متن کاملThe loss of c-Jun N-terminal protein kinase activity prevents the amyloidogenic cleavage of amyloid precursor protein and the formation of amyloid plaques in vivo.
Phosphorylation plays a central role in the dynamic regulation of the processing of the amyloid precursor protein (APP) and the production of amyloid-β (Aβ), one of the clinically most important factors that determine the onset of Alzheimer's disease (AD). This has led to the hypothesis that aberrant Aβ production associated with AD results from regulatory defects in signal transduction. Howeve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 171 شماره
صفحات -
تاریخ انتشار 2005